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1. Introduction 

Thermal instability of flows in a porous medium has been extensively studied by enormous research 

workers on the basis of Darcy’s law[1] which completely neglects the viscous forces. An excellent review has 

been given by Scheidegger[2]  and Yih[3] . Brinkman[4]  proposed a plausible modification to Darcy’s law that 

takes into account the viscous forces. Jaimala and Agrawal[5] , unlike Irmay[6]  and Beck[7] , investigated a 

more physically realistic model in which the inertia and viscous forces are included in their usual forms to 

account for the flows with high flow rates, high permeability and high viscous forces. 

Instability of compressible and incompressible flows has been studied extensively by a number of 

research workers in past few decades. In almost all such investigations, the Boussinesq’s approximation is used 

to simplify the equations of motion. Jeffreys[8]  tried to provide a justification of under certain conditions. If the 

vertical dimension of the fluid be much less than the scale height and the fluctuations in temperature, pressure 

and density, introduced due to the Boussinesq’s approximation for steady, infinitesimal motions of 

compressible fluids and Spiegel and Veronis[9]  simplified the set of equations governing the compressible 

flows motion, do not exceed their total static variations, then the flow equations are same as for incompressible 

fluids, the static temperature gradient being replaced by its excess over the adiabatic gradient and the specific 

heat at constant volume C  by that at constant pressure Cp.  

Using the model as suggested by Spiegel and Veronis Banerjee and Agrawal[10]  investigated the 

thermal instability of parallel shear flows in the presence of both adverse and non-adverse temperature 

gradients. In an important paper, Bansal and Agrawal[11]  investigated the thermal instability of a compressible 

shear flow with weak applied magnetic field in the presence of adverse or non-adverse temperature gradient.  

In the present analysis, we have examined within the frame work of linear analysis, the thermal 

instability of a compressible shear layer in a porous medium. Though, some literature has been reported in 

which magnetic filed destabilizes a wave number range known to be stable in its absence [Kent[12] , 

Gilman[13] , Jain[14] ], in most of the situations magnetic field has a stabilizing effect. 

As explained by Chand and Agrawal[15] , the problem under investigation provides a reasonably good 

mathematical model to a narrow layer of atmosphere above earth’s surface so that the curvature effects can be 
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neglected and the boundaries be taken as horizontal, the lower boundary (the earth’s surface) being rigid and the 

upper boundary being free. Temperature variations are due to the Sun and the pattern of temperature variations 

(increasing or decreasing in the vertical direction) depends upon the place/ time of investigation. The 

assumption of small thermal conductivity not only simplifies the mathematical analysis, thus leading to a 

number of interesting results, but also is important in the context of physical situations in which the transfer of 

heat is not instantaneous (case of very large thermal conductivity), rather it is slow. We consider the physical 

situation is which the wind speed is small so that our study is restricted to the case of low Mach number. The 

study is also restricted to the case of large wave numbers only.  

 

2. Formulation of the problem 
In this paper we consider an unidirectional flow of a compressible, viscous and heat conducting fluid in 

the presence of a horizontal magnetic field in a homogeneous and isotropic porous medium, confined between 

two infinite parallel plates situated at a distance d apart. In a cartesian frame of reference, the axis of x is in the 

main flow direction and the axis of z is against gravity. Boundaries are maintained at constant temperatures T1 

and T2 respectively. The layer depth is small enough so that it is much less than the scale height as defined by 

Spiegel and Veronis. The basic state under investigation is, therefore, characterized by  
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where V, T, H   and P are the fluid velocity, temperature, magnetic field, density and pressure respectively. 

Further, T (z) = D (T0) z + T1, 
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 The time independent solution of the governing equations does not change in the presence of a uniform 

magnetic field and therefore the basic velocity distribution remains the same as in Chand and Agrawal. DT0 is 

the uniform static temperature gradient and asgivenarekand mm  
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3. PERTURBED STATE SOLUTION AND THE LINEARIZED PERTURBATION EQUATIONS 
We now suppose that the solution in the basic state is slightly perturbed so that every physical quantity 

is assumed to be the sum of a mean and a fluctuating component, later designated as primed quantity and 

assumed to be very small in comparison to its basic state value. The small disturbances are assumed to be the 

functions of the space as well as time variables  

 Following Spiegel and Veronis, the linearized perturbation equations of motion, continuity, heat 

conduction and magnetic field are 
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where a dash denotes the perturbation quantity and 1,,'.' kC pm    and   are respectively the thermal 

conductivity, medium porosity, medium permeability and the coefficient  of viscosity.  pCgDT 0  is the 

excess over the adiabatic gradient  pCg  and the other symbols have their same meaning as in Spiegel and 

Veronis. 

 We analyse the perturbations into normal modes, taking dependence of any perturbation quantity 

 tzyxf ,,,' of the form. 
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where xk  and yk  are the real wave numbers in x and y directions, 
22

yx kkk   and C, in general , is 

complex. 

 Now eliminating various physical quantities from the resulting equations and non-dimensionalysing the 

resulting equations, using  
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,
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Cw   where d is the characteristic length and 0U  is the 

characteristic velocity, we obtain after omitting the asterisks, the following non-dimensional equations 
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The necessary boundary conditions are 

.000,00,0 2 dandzatanddzatwDzatDwdandzatow    

Now multiplying the equation (12) by w* (complex conjugate of w) on both sides and taking the conjugate of 

(13), multiplying by  , and then integrating over the range of z, we get  
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Now to eliminate  
*w  from equations (15) and (16), we get  
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Again substituting ir innn   in the equation (17) and then equating real and imaginary parts, we get 

 
 1

110

2

0

4
00

2

30 IRk
CgDTdU

I
nJdUk

kIJ e

pr 





 

 






 

222

11 I
n

Sn
InRk r

rD                ...(18) 

and 
 

01
22

0

2

0

4
00

2
































n

S
I

CgDTdU
I

JdUk
n

p

i


                   ...(19) 

Now, multiplying equation (18) by n, and equating real and imaginary parts we get 
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4. Results and Discussion 
 

Now we have following result and theorems: 

 

Result :  Equation (19) is interesting in the sense that where as it does not allow oscillatory modes to exist in the 

absence of a magnetic field, there is a possibility of oscillatory modes to exist in the presence of magnetic field, 

this discussion holds for 00  pCgDT  

 

Theorem1. If oscillatory modes whether stable or unstable under the condition 00  pCgDT , then 

ir nandn  must lie inside the circle Sn 
2

. 

Proof:   For the existence of oscillatory modes equation (19) becomes 

                 
If we impose the condition , then the validity of the above equation becomes 

                                 

or                              

       

or                              

 

                                                                           which proves the theorem. 

 

 

 

 

Theorem 2.   The modes are stable under the condition  

                           
 

Proof :    If stable modes exist in the problem then equation (18) can be written as 

         
                                                                                                                                 …(22)                              

For stable modes we must necessarily have  and obviously if  then definitely  

and hence the modes are stable under the given condition. Hence the theorem. 

 

Theorem 3. If  then the modes are unstable under the condition 

                           
and  
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Proof:          If , then the equation (22) can be written as 

    
                                                                                                                                … (23) 

If we impose the conditions 

 

 
and     

 
Then in equation (23) the quantity in bracket in LHS is positive definite and the whole quantity in RHS is 

negative definite, so  must be negative and hence the modes are unstable. 

 

Theorem 4: If unstable  oscillatory modes  exist in the problem, then necessary 

condition is given by  

                        
 

Proof :   For oscillatory modes  equation (19) becomes 

 

 
or  

 
 

For the validity of the above equation we must necessarily have   

 

           
or 

          
 or                                                 

 

          
                                                                    

                                                                      which proves the theorem. 

 

Conclusion:      In this paper we examined the framework of linear stability analysis of compressible fluid layer 

in a porous medium in the presence of weak magnetic field and low thermal conductivity. The assumption of 

small thermal conductivity not only simplifies the mathematical analysis, thus leading to a number of interesting 

results, but also is important in the context of physical situations in which the transfer of heat is not 

instantaneous (case of very large thermal conductivity), rather it is slow.The important and different results are 

obtained in this paper depend on . 
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